
AD-A249 322

DTICSELECTE 1
m MAYO 41992 u

$ D

T VE IK-1

Domain Morphisms: A New Construct for
Parallel Programming and Formalizing

Program Optimization

Marina Chen and Young-il Choo

YALEU/DCS/TR-817
August 1990

Tu . , sole; its 92-10010
i diVt,ibutic i, unii-aitte[

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

92 4 20 056

DTIC
I fELECTE

Yale University
Department of Computer Science

Domain Morphisms: A New Construct for
Parallel Programming and Formalizing

Program Optimization

Marina Chen and Young-il Choo

YALEU/DCS/TR-817
August 1990

This work has been supported in part by the Office of Naval Research under
Contract N00014-89-J-1906, N00014-90-J-1987.

I This do-umunt has been approved I
fox public releiso and sale; its
distxibutiofl is. unlimited.

Domain Morphisms: A New Construct for
Parallel Programming and Formalizing Program

Optimization
Marina Chen Young-il Choo

Department of Computer Science
Yale University

New Haven, CT 06520
chen-marina@yale.edu choo@yale.edu

August 1990

Abstract

This paper addresses the issue of how to make the task of writing correct and ef-
ficient parallel programs easier. Domain morphism is a new construct for specifying
parallel-program optimization at a high level, and enables an equational program
transformation whereby the optimized program containing implementation details
is derived mechanically. In addition, we introduce the constructs index domain,
data field, communication form, and hyper-surfaces for facilitating parallel pro-
gramming and generating efficient target parallel programs with explicit synchro-
nization and communication. We describe an equational theory and new program
transformation procedures motivated by these new constructs. A programming
example illustrating the use of these constructs and the program transformation
steps is given.

Accesion
For

NTIS CFRA&I
DTIC TAB3
Uarmou'ced i
Justification............

y

BY _

Distribution i
Availability Codes

Avail ar'd, or
Dist Special

Statement A per telecon
Dr. Richard Lau ONR/Code 1111
Arlington, VA 22217-5000

NWW 5/1/92

If!

Contents 2

Contents

1 Introduction 1

2 New Constructs 2
2.1 Index Domains 2
2.2 Kinds of Index Domains 2
2.3 Index Domain Morphisms 3
2.4 Data Fields and Data Field Morphism s. 4
2.5 Constructs for other Semantic Entities 5
2.6 Effect of Reshape Morphism on Communication Form 5

3 Program Transformation 6
3.1 Equational Theory 6
3.2 Strategy for Obtaining New Definitions 7
3.3 Metalanguage 7
3.4 Example: Successive Over-Relaxation 7

New Domains and Domain Morphisms 8
Hyper-Surface Derivations 8
Data Field Derivation 9

4 Concluding Remarks 10

A Hyper-Surfaces 12
A.1 Representation 12
A.2 Hyper-Surface Operations 12

B Full Derivation of SOR 13

1 Introduction 3

1 Introduction

Writing correct programs is not easy; making prograris run efficiently requires further com-
plec process of matching the logical structure of the program to the underlying physical
structure of the machine. With the arrival of large-scale multi-processor computers, we face
the challenge of parallel programming where the allocation of processors and the cost of
inter-processor communication now enter into the question of efficiency.

This paper addresses the issue of how to make the task of writing correct and efficient
parallel programs easier. Our approach to programming starts with a high-level problem
specification, through a sequence of optimizations tuned for particular parallel machines,
leading to the generation of efficient target code with explicit synchronization and commu-
nication. The key new concept of domain morphism specifies the transformation from one
program to the next in the sequence. It plays a dual role, first, as a construct for specify-
ing an optimization strategy, and second, in enabling an equational program transformation
whereby the optimized program can be derived mechanically.

Domain morphisms capture, as mathematical objects, the essence of existing loop trans-
formations in vectorizing and parallelizing compilers, as well as new techniques of data lay-
out and efficient inter-processor communication for distributed and shared-memory machines
with memory hierarchy.

Formalizing the optimizations a parallelizing compiler must do requires the notion of
domain morphism, which in turn requires an equational theory of programs. We have found
the traditional program transformations inadequate in that operators such as folding and
unfolding [?, ?, ?]) are applied only to expressions, whose extensions remain unchanged.
The equational theory allows us to derive a new program which is equivalent, in a precise
way defined by the domain morphism, but which is extensionally different from the original
in that it is defined over the new domain.

The rest of the paper is organized as follows. In Section ??, we introduce the domain
morphism and other constructs for specifying parallel program transformations. Section ??
introduces the equational theory for program transformation. The next section presents in
full detail an example of domain morphism induced program transformation on a program
for solving Laplace's equation using successive over-relaxation (SOR).

2 New Constructs

In the following, we introduce a few programming constructs which are important for par-
allel programming, where of central importance is the notion of domain morphism. Index
domains are abstractions of the "shapes" of composite data structures, which in most cur-
rent programming languages are not first-class objects. Data fields generalize the notion
of distributed data structures, unifying the conventional notions of arrays and functions.
Communication forms defined over an index domain are means of specifying the data depen-
dencies, and the inverse of a communication form (defined precisely later) provides useful
directives for optimizing inter-processor communication. Hyper-surfaces are for specifying
the boundaries of index domains. Finally, domain morphisms describe the reshaping of in-
dex domains aimed at optimizing data or control struqtures for efficiency reasons as well as

2 New Constructs 4

the necessary mapping from the logical structure of the problem to the physical domain of
machine and sequencing in time.

Notation A function f from domain A to codomain B is denoted f : A --+ B, and is defined
using function-abstraction: f = fn(x):A{r[x]}. The conditional construct is represented in a

two-dimensional form {b h}and its meaning is hi if b, is true for one i, and undefined

otherwise.

2.1 Index Domains

An index domain D consists of a set of elements (called indices), a set of functions from D to
D (called communication operators), a set of predicates, and communication cost associated
with each communication operator.

In essence, an index domain is a data type with communication cost associated with each
function or operator. The reason for making the distinction is that index domains will usually
be finite and they are used in defining distributed data structures (as functions over some
index domain), rather than their elements being used as values. For example, rectangular
arrays can be considered to be functions over an index domain consisting of a set of ordered
pairs on a rectangular grid. Also, the elements of an index domain can be interpreted as
locations in a logical or real space and time over which the parallel computation is defined.
So we classify index domains into certain kinds (second order types) according to how they
are to be interpreted (for example, as time or space coordinates).

Basic Index Domains We now give examples of basic classes of index domains. The
most often used are the interval and the hypercube domains:

An interval domain, denoted interval(m, n), where m and n are integers and m < n, is
an index domain whose elements are the set of integers { m, m + 1, m + 2, ... ,n } with the
usual integer functions and predicates. The communication operators are prey : i a i - 1
and next : i -* i + 1, with communication cost 1. The operators lb and ub return the lower
bound (in) and the upper bound (n) of the interval domain respectively. When m > n, we
define the index domain to be the same except that prey and next have reversed meaning.

A hypercube domain of dimension n, denoted hcube(n), is an index domain with 2' ele-
ments of the form (x,... , x,-1), where each xi is either left or right (or just 0 or 1), and
communication operators hcnb(j, k), for j an element of the data type and 0 < k < n - 1,
which maps the element j to its neighbor along the kth dimension, each with unit commu-
nication cost. Predicates are left?(k) and right?(k), for testing whether an element is on the
left or right half of the kth dimension.

Index Domain Constructors Given index domains D and E, we can construct their
product (D x E), disjoint union (coproduct) (D + E), and function space D -. E, in the
usual way.

2 New Constructs 5

2.2 Kinds of Index Domains

As discussed above, it is useful to indicate how an index domain is to be interpreted by
"typing" index domains with "kinds" (second-order types). Analogous to the first-order
typing, D[K] will mean that the index domain D is of kind K. The following are the kinds
we have found useful for compiler optimizations:

Universal (U): the kind of any index domain as well as any other data type, such as the
integers and the reals.

Temporal (T): the kind of index domain representing time coordinates (subkind of U).

Spatial (S): the kind of index domain representing space coordinates (subkind of U).

Processor (P): the kind of index domain representing processor coordinates (subkind of
S).

Memory (M): the kind of index domain representing memory locations within a processor
(subkind of S). Memory hierarchy can be introduced with other kinds Mi which are
subkinds of M, where i ranges over the levels of the memory hierarchy.

2.3 Index Domain Morphisms

Index domain morphisms formalize the notion of transforming one index domain into an-
other, with the kinds of the domains indicating the change of interpretations.

Definition Let D and E be two index domains. An index domain morphism is a function
g from D to E such that for all elements x and y in D, if there exists a composition r of
communication operators rl or2o. • • rk over D such that, y = r(x), then there is a composition
r' of communication operators rl o - - . ', over E such that g(y) = T'(g(x)).

The extra constraint is to ensure that if there is a path in the first domain from x to y,
then there is a path from g(x) to g(y).

Reshape Morphisms For any index domain morphism g : D -- E, a left inverse, if it
exists, is an index domain morphism h : E -- D such that hog = 1D, the identity morphism
over D. If g is also a left inverse of h (i.e., g o h = 1E), then h is called the inverse of g and
is denoted by g- 1. A morphism that has an inverse is commonly known as an isomorphism
but here will be called a reshape morphism to emphasize the idea of "reshaping" one index
domain into another.

To require the existence of the left inverse implies that a reshape morphism must be bijec-
tive. However, we can easily derive a reshape morphism from an injective domain morphism
by restricting the codomain as follows: Given an injective domain morphism g' : D -+ E,
the image of D under g', denoted image(D, g'), is an index domain whose elements are the
image of the elements of D and whose communication operators are those of E. Clearly,
g : D --+ image(D,g'), derived from g', now has a well-defined left inverse.

Here are examples of some useful reshape morphisms:

2 New Constructs 6

An affine morphism is a reshape morphism which is an affine function from one prod-
uct of intervals to another. Affine morphisms unify all types of loop transformations
(interchange, permutation, skewing) [?, ?, ?, ?, ?], and those for deriving systolic al-
gorithms [?, ?, ?, ?]. For example, if D1 = interval(O, 3) and D2 = interval(O, 6), then
g = fn(i,j) : D1 x D 2{(j,i): D 2 x D1 } is an afflne morphism which effectively performs
a loop interchange.

Another example illustrates a slightly more interesting codomain E of the morphism g
by taking the image of a function g'.

Do = interval(O,3) D = Do x Do
E = image(D,g') where{ g' = fn(i,j):D{(i- j,i +j)} }
g = fn(i,j):D{(i -j,i + j):E} g- = fn(i,j):E{((i +j)/2,(j - i)/2):D}

Whenever it is legal to apply this affine morphism to a 2-level nested loop structure-
consistent with the data dependencies in the loop body [?, ?, ?, ?, ?, ?])- a similar
structure, but "skewed" from the original, is generated. The most common case is
when elements of the inner loop can be executed in parallel, but where only half of
the elements are active in each iteration of the outer loop. In this example, the index
domain E has holes, and so guards in the loops must test whether i + j and i - j are
even, since only these points correspond to the integral points in D
In Section ??, we will show in detail how such a transformed loop is derived algebraically.

e A uniform partition of a domain D is a reshape morphism g : D --+ D. x D 2 , with
the property that the codomain has a greater number of component domains (i.e., is of
higher dimensionality).

For example, If D = interval(O, 11), D1 = interval(O, 3), and D 2 = interval(O, 2), then

g = fni : D[S]{(i/3,i mod 3): DI['P] x D2 [M]}

is a uniform partition that distributes the elements of an index domain of the spatial
kind as follows: the 12 elements are partitioned into 3 blocks of 4 elements each, each
block is assigned to a processor, and each element in a block is assigned to some memory
location.

In general, a partition is a reshape morphism g : D -+ E(i:1) D(i), where I is some
index domain and E denotes generalized sum over all the D(i)'s. The idea is that the
domain D is partitioned into disjoint union of subdomains D(i), which may contain
different number of elements.

There are numerous other forms of reshape morphisms ranging from "piece-wise affine"
morphisms for more complex loop transformations [?], to those that are mutually recursive
with the program (to be transformed) for dynamic data distribution.

Refinement Morphisms A domain morphism that does not have an inverse is called
refinement morphism. Though we shall not deal with them in this paper, refinement mor-
phisms are useful in representing more complex relationships between domains, such as the
transformation of one-to-many broadcasts into binary tree broadcasting [?].

2 New Constructs 7

2.4 Data Fields and Data Field Morphisms

Definition A data field is a function over some index domain D into some domain of values
V.

Usually, V will be the integers or the floating point numbers; however, for higher-order
data fields, it can be some domain of data fields. Data fields unify the notion of distributed
data structures, such as arrays, and functions. A parallel computation is specified by a set
of data field definitions, which may be mutually recursive.

To illustrate the use of data fields, consider the following program segment written in
some imperative language (assuming there are no other statements assigning values to A):

float array A(O..n,O..n);
if i=0 or j-0 then A:-e;
for i:= 2 to n do f

for j :- 2, n do {
A(i,j) := A(i-1,j) + A(ij-1) } }

Let V be the data type of floating point numbers, in the notation of data fields, the above
is written as

Do = interval(O,n) D = Do x Do

a:D--Vi =OVj =-- e
a:D -, V= fnI~ else --, a(i - 1, j) + a(i, j- 1)

The primary role of index of domain morphisms is in defining new data fields.

Definition A data field morphism induced by an index domain morphism g : D - E, is a
mappingmapping g.: (E ---+ V) -+(D -- V): a "aog

where D --+ V and E --* V are sets of data fields.

Given a data field a : D --, V and a domain morphism g : D --+ E, what we generally
want is to find the new data field a such that g*() = a. In order to solve this equation we
need the inverse of g, i.e. g needs to be a reshape morphism. Then given g and g-', we can
formally derive a = g- *(a) = a o g- 1 .

2.5 Constructs for other Semantic Entities

Since a compiler relies on syntactic cues to do its optimizations, we found it important to
make explicit certain semantic entities which are implicit in current programming languages,
hyper-surfaces and communication forms.

2 New Constructs 8

Hyper-Surfaces Hyper-surfaces define the boundexies of domains where functions take
on special values. The idea is to elevate boundaries cf domains to be semantic entities and
promote a programming style where the same semantic entity has a single syntactic entity
corresponding to it. This way, the repetitive occurrence of related boolean expressions for
testing a particular boundary often seen in programs can be eliminated. The notion of
hyper-surface makes the algebraic program transformation easier and more elegant, as well
as helps the compiler recognize domain boundaries and do optimizations such as aligning
multiple data structures and reducing storage use.

In this paper, the notion of hyper-surfaces is used only in the example of Section ??, we
therefore give the definitions in Section ?? of the Appendix.

Communication Forms Given an index domain D, a communication form, -, is a com-
position of communication operators.1 The idea is that given an index (considered as the
receiver of a message), the communication form produces the "sending" index of the message.
Conversely, the left inverse, if it exists,2 of a communication form indicates the "receiving"
index given an index interpreted as the sender of a message.

An asynchronous, distributed-memory parallel machine, at its lowest level of communica-
tion system, requires to know both the sender and receiver in order to establish synchroniza-
tion and communication.3 For the compiler of any parallel language without explicit "send"
and "receive" commands, communication forms must be extracted and its inverse derived or
provided by user in the form of directives.

In the following, we show the effect of domain morphisms on communication forms, which
provides vital information for generating communication commands in the target code.

2.6 Effect of Reshape Morphism on Communication Form

Consider a data field a: D --+ V defined by

a = fn(i):D{ -[b(-(i))I I

which contains a call to data field b: D --+ V using the communication form -y on index i.
Let g : D -* E[P x MJI be a reshape morphism from D to E with inverse g-1 . The resulting
data fields after the reshape transformation are i = a o g- ' and b = b o g- '. Suppose
-y is bijective and -y- given," then the new communication form and its inverse after the
transformation are

i=goyfog - 1 and j-'=go-f-og-1

as shown in the commuting diagram of Figure ??.
The formulation of the new communication form shows that in compiler design and paral-

lel language design, we should do the following: (1) By all means, try to obtain closed forms
for -y and its inverse at compile time so that they do not have to be evaluated at runtime. (2)

'This is only a special type known as a simple communication form. In general, a communication form
can be defined to be a set of relations representing multiple many-to-many communications.

2Again, in general, we consider the inverse relation, which always exists.
3 Please refer to Hoare's CSP model [?].
4Recall that, in general, y is a set of relations and the result generalizes accordingly.

3 Program Transformation 9

b ___ a
V b D D a V

Sg OY0g-
' oo-1

E -* a. E
go-Y 1 o g- 1

Figure 1: Diagram showing the new communication form induced by domain morphism g
and communication form y.

If the above is not possible, devise an efficient run-time implementation to evaluate yf and
its inverse. (3) The information needed to do the above is contained in the original commu-
nication forms (and their inverses) and the domain morphism (and its inverse); hence, the
compiler must generate the morphisms and the communication forms either automatically
or rely on user provided directives.

3 Program Transformation

Data fields and domain morphisms are semantic entities which are represented in a program-
ming language. Semantically, a new data field can be defined as the composition of a data
field and a domain morphism. In this section we describe an equational theory that allows
the representation of the new data field to be obtained by manipulating the representations
of the given data field and domain morphism. First, we introduce the equational theory, and
then describe the steps in the program transformation using reshape morphisms.

3.1 Equational Theory

By an equational theory of a programming language we mean a set of valid equations or
algebraic identities in the language (M = N) along with inference rules for deriving new
equations from old. It is based on the equational theory of Church's lambda calculus [?].
The c, and 3 rules are well understood, but it turns out that v7-abstraction is essential in
order to simplify certain expressions. Figure ?? lists a minimal set of algebraic identities for
a functional language with function-abstraction, the conditional expression and composition
of functions. Some of these identities are listed in Backus's work on FP [?], though the key
difference is that he does not have any involving explicit function-abstraction.

Figure ?? lists the basic inference rules including the usual ones for equality (reflex-
ivity, symmetry, and transitivity), substitution, as well as ones obtained from application,
abstraction and composition.

A definition, in an equational theory, is a simple equation where the left hand side is
a single variable and the right hand side is some expression which may contain the same
variable (recursive definitions). In the framework of [?], a definition enriches a theory with
a new operator and a new equation. For a mutually recursive set of function definitions, we

3 Program Transformation 10

fn(x):T{M) = fn(y):T{M[x/y]} (a)

fn(x):T{M}(N) = M[x/N] (/3)
fn(x):T{M(x)} = M (xnotfreeinM) (.1)

Figure 2: Algebraic identities from the A-calculus, where M and N are expressions and T is
a type-expression.

Fo {B -* H} = {B -- Fo H} (1-dist-comp-if)

{B-- H}oF = {BoF-+HoF} (r-dist-comp-if)

{B-+H}(x) = {B(x)-- H(x)} (dist-app-if)
fn(x){B(x) - H(x)} = {fn(x){B(x)} -- fn(x){H(x)j1} (dist-abs-if)

Figure 3: Algebia;c identities involving the conditional, where F and H are function expres-
sions, and B is a boolean function expression.

M=M M=N M=LandL-=NN=M M=N

M=N M=N
MoF =7To HoM=HoN

M=N M=N M=N
fn(x){M} = fn(x){N} M(L) = N(L) L(M) = L(N)

M=N
M[H/K] = N[H/KI

Figure 4: Inference rules, where M[H/K] denotes the new term with H replaced by K, the
substitution operation of the A-calculus.

consider the functions that are implicitly defined as satisfying all the defining equations in
the enriched theory.

3.2 Strategy for Obtaining New Definitions

With the equational theory providing the algebraic identities and the inference rules, we
describe the strategy of formally transform the original program into a more efficient one.

For simplicity we begin with a program consisting of one definition:

a = fn(x):D{r[a]},

where r, [a] is an expression in x possibly containing a. By an abuse of notation, we also use
a to denote the data field defined. Next, let the reshape morphism g and its inverse be given
by

g =fn(x):D{r2 :E} and g-' = fn(y):E{r 3 :D}.

Semantically, what we want is a data field a satisfying a = aog - . However, merely executing
the program g-' followed by a does not decrease the communication cost. What we want is

4 Example: Successive Over-Relaxation 11

a new definition of h which does not contain either a, g or g- 1. A strategy for obtaining a
new definition for a from the definitions of a, g and g-1 is the following:

1. Using the identity a = a og, replace all occurrences of a with a og in the definition of a.

2. Using a combination of unfoldings of g and g-' and various other identities given in the
theory, eliminate all occurrences of g and g- 1 from the result of the first step. A very
useful transformation turns out to be the ,i-abstraction, where we provide a function
with dummy arguments in order to unfold it.

3.3 Metalanguage

Since the equational theory deals with programs, and equations, a metalanguage for manip-
ulating program expressions can be defined [?]. The derivation strategy described above can
be programmed in the metalanguage using metalanguage operators, the constructors and
selectors.

In the following example derivation, the metalanguage operators that achieve the trans-
formation appear in square brackets.

4 Example: Successive Over-Relaxation

We illustrate our program transformation strategy on the successive over-relaxation defined
in Program-1. This program solves Laplace's equation using finite difference formula-
tion. The program finds solutions for the unknown potential within a finite, discretized 2-
dimensional spatial domain (defined by index domain Do x Do) with fixed boundary values
and initial values (conditional branches guarded by hyper-surfaces So and S1, respectively).
The algorithm is iterative (over index domain D1), and in each iteration the potential at
every point of the 2-dimensional grid is the average of the values of its four neighboring
points and itself. The over-relaxation ordering is such that the values of the current itera-
tion are used for the upper ((i - 1,j)) and left ((i - 1,j)) neighbors, while those from the
previous iterations are used for itself ((ij)) and the other two neighbors. This algorithm
uses O(n2) space but only 0(n) parallelism due to the over-relaxation ordering. The point
of the domain morphism is to transform this program to another that has 0(n 2) parallelism.

4 Example: Successive Over-Relaxation 12

Program-1
Index Domains

Do = interval(0,n) D1 = interval(1,m) D = prod-dom(Do, Do, DI)

Hyper-Surfaces
So = fn(i,j,k):D{(i= 0,>) A (i = n,<) A (j =0,>) A (j =n,<)}
S1 = fn(ij, k):D{(k= 1,>) A (k m,

Data Field
a = fn(i,j,k):D

I S*(i,j,k) - Ao(i,j) 1
S+S(i,j,k) S (i,j,k) - f(a(i- 1,j,k),a(i,j - 1,k),a(i,j,k- 1),a(i + 1,j,k- 1),

a(i,j + 1,k - 1))

Although the program uses hyper-surfaces in the guards (see Section ?? for detailed descrip-
tions), for comparison, we present the equivalent boolean expressions:

So(i,j,k) (i=OVi=nVj=OVJ=n)A(O<i<n)A(O<j <n)A(1<k<m)
S+(ij,k) -(0<i*<n) A(0<j<n)A(l<k<m)

SO(i,j,k) E (k=lvk=m)A(0<i<n)A(0<j<n)A(l<k<m)
S+'(i,j,k) = (0<i<n)A(O<j<n)A(1<k<m)

The use of hyper-surfaces not only allows the compiler to extract useful optimization infor-
mation from the program, but also provides conceptual tools for reasoning about the different
boundaries.

4.1 New Domains and Domain Morphisms

First, we define the new domain E and domain morphisms g : D -+ E and g-' : E -+ D. The
kind of domain E indicates that the first two coordinates are to be interpreted as spatial,
and the third temporal.

Morphisms
E = image(g', D) where{ g'= fn(ij, k):D{(ij, i + j + 2 k)} }
g = fn(i,j,k):D{(i,j,i +j + 2 *k):E[SxSxT]}

= fn(i,j,k):E{(i,j,(k- i- j)/2):D}.

Next, define new surfaces Jo and R, which satisfy:

to = So o g- ' R, = Sog-1

So = Roog S 1 = Rog

4 Example: Successive Over-Relaxation 13

4.2 Hyper-Surface Derivations

R1 = S 1 og - 1

= fn(i,j,k):E{S, og-(i,j,k)}

= fn(ij, k):E{SI(i,j, (k - i - j)/2)} (Unfold composition and g-)

= fn(ij, k):E{fn(i,j, k):D{(k = 1,>) A (k = m, <)}(i,j, (k - i - j)/2)}

= fn(ij, k):E{((k - i - j)/2 = 1,>) A ((k - i - j)/2 = m, <)}

= fn(i,j,k):E{(k-i-j=2,>)A(k-i-j=2m,<))}

Similarly, we obtain

Ro = fn(ij,k):E{(i = 0,>) A (i = n, <) A (j = 0,>) A (j =n,

which has the same body as So since there are no constraints on the third coordinate (k).

4.3 Data Field Derivation

Let KO denote the equation defining a in Program-1. The derivation of the definition for
the new data field a makes use of the identities

a=aog-' and a=aog.

(Note: we adopt the convention that composition binds more tightly than application, so
that f o g(x) = f(g(x)).)

1. Substitute 'a" with "a o g in K0 [1 = subst(Ko, a, o g):

&og = fn(i,j,k):D

So(i,j,k) - 0
S[(i,j,k) -- Ao(i,j)

S+ (i,Jk) Sj(i,j, k) f(a og(i - 1,j,k),aog(i,j - 1,k),
o g(i,j, k - 1), a o g(i + 1,j, k - 1),

aog(ij + 1,k- 1))

2. Right-compose both sides of il with rg-", and then simplify compositions by eliminat-
ing identities (g o g 1 - 1E and g-1 o g , 1D) and unfold the composition operator when
possible (f o g(x) > f(g(x)))
[I = simplify-comp(right-comp(r 1, rg-l))]:

a = [fn(i,j,k):D

So*(i, j, k) -~0
S (i~~j~S) -- I (i, j, k) -,Ao(i, j)

) S+(ij,k) - A((g (i- I,, k)), a(g(i,j -1, k)), 1og- 1

-+ f&(g(ij, k - 1)), (g(i + 1,j,k - 1)),

a(g(i,j + 1,k- 1)))

4 Example: Successive Over-Relaxation 14

3. Distribute the abstraction r(i,j, k):D' over the conditional [PC3 = dist-abs-if(IC2, r(2j, k):

fn (i,j, k): D{ISo'(i,j, k)} .- n f(i, j, k): D{O }

fn(i, j, k):D { So (i,j, k)} -

fn(i,k):D{SI*(i,j, k)} fn(i,j, k):D{Ao(i,j)}

a = fn (i'j,'k):D{IS+ (i'j,'k)} o -

fn(i,j, k):D{

f(a(g(i - 1,j,k)),a(g(i,j- 1, k)),

&(g(ij, k - 1)), a(g(i + 1,j, k - 1)),

a(g(ij + 1,k- 1)))}

4. Perform q-reductions (fn(x):D{M(x)} r M) [tC4 = eta-reduce(IC3)]:

So - fn(i,j,k):D{O}

S'- fn(i,j,k):D{Ao(i,j)}

S +
= fn(i,j,k):D{ -1

SO+-- f(a(g(i- 1,j,k)),&(g(i,j - 1,k)), og

a(g(i,j,k - 1)),a(g(i + 1,j,k - 1)),

a(g(i,j + 1,k- 1)))}

5. Right-distribute the composition over the conditional [K,5 = r-dist-comp-if(K4)]:

So o g- (fn(i,j, k):D{O}) o g-1

S, og - 1 -- (fn(i,j, k):.D{Ao(i,j)}) og-

S+ o g-1 --+ (fn(i,j, k):D{

0So - f(&(g(i - 1,j, k)), a(g(i,j - 1, k)),

a(g(i,j, k - 1)), a(g(i + 1,j, k - 1)),

a(g(ij + 1,k- 1)))}) o g- 1

6. Substitute rSo o g" 1 with t/" and rSo g- with /

I6 = subst(subst(tc5, rs5 o g-n, rpN1), rS 0 - r l)1:

- (fn(i,j,k):D{O})o g-1

RI* -- (fn(i, j, k):D{ Ao(i,j)}) o g

R + -. (fn(i,j,k):D{

= - f(a(g(i - 1,j, k)),a(g(i,j - 1, k)),

a(g(i,j, k - 1)), a(g(i + 1,j, k - 1)),

a(g(i,j + 1, k - 1)))}) o g - I

4 Example: Successive Over-Relaxation 15

7. Eta-abstract the right-hand side of the equation by r(i ,j, k):E'

[K7 = mk-eqn(r,&, mk-eta(r(i, j, k):E1 , rhs(#c6)))j:

a = fn(i,j,k):E{

-- (fn(i,j,k):D{O}) o g-'
R * (fn(i, j, k): D{Ao(i*, j)}) o g- 1

R -- (fn(i,j,k):D{ (ij,k)}

- (a(g(i- 1,j,k)),a(g(i,j - 1, k)),

a(g(ij,k- 1)),a(g(i + 1,j,k - 1)),

(g(i,j + 1, k - 1)))}) o g- 1

8. Distribute application over conditional [K8 = dist-app-if(K7)]:

a= fn(i,j,k):E{

R*(i,j, k) -(fn(i,j, k):D{O}) o g-(i,j, k)

R*(i,j, k) - (fn(i,j, k):D{ Ao(i,j)}) o g-'(i,j, k)
R+ (i, j, k)

J1 t(i,j,k) (fn(i,j, k):D{

f(a(g(i - 1,j,k)),a(g(i,j- 1, k)),
a(g(i,j, k - 1)), a(g(i + 1,j, k - 1)),

a(g(i,j + 1,k - 1)))}) og-(i,j,k)

9. Simplify composition [r 9 = simplify-comp(K8)]:

a = fn(i,j,k):E{

R4(i,j,k) -- (fn(i,j,k):D{O})(g-(i,j, k))
Ro(ij,k) -+ (fn(i,j,k):D{Ao(i,j)})(g-'(ilj~lk))'

R+(i,j, k) --,

P (i,j,k) (fn(i,j, k):D{

f(&(g(i - 1,j,k)),a(g(i,j - 1, k)),

a(g(i,j, k - 1)), a(g(i + 1,j, k - 1)),

a(g(i,j + 1, k - 1))))(g-1 (i,j, k))

10. Unfold rg-n and r'g [l 0 = unfold(unfold(K 9, rg-"'), rgl)]:

a = fn(i,j,k):E{

4 Example: Successive Over-Relaxation 16

Rg(i,j, k) . (fn(i,j, k):D{O})(ij, (k - i - j)/2)

R (i,j, k) -

R(i, j, k) - (fn(i, j, k):D{Ao(i, j)})(i, j, (k- i - j)/2)
R+ (i, j,k)--

(fn(i,j, k):D{
jr~~a(/- 1,j,i - 1 + j+2 • k), a(i,j - 1,: + j - 1 + 2*• k),

a~(i,j,i + j + 2 * k - 2), a(i + 1,j,i + j + 2 * k-i1),

&(i,j + 1,i + j + 2,* k - 1))})(i,j,(k - i -j)/2)

11. Perform -reduction and simplify the arithmetic [KU = simlify-arith(reduce(tlo))]:

a = fn(i,j,k):E{

R(i,j k) -~0

R'R,(i,j,k) -- Ao(i,j)
'| (~jk)--,R+(ijk) "f f(a(i - 1, j, k- 1),a (z, J'- 1, k - 1), }

a(i,j,k- 2), a(i + 1,j,k - 1),

a(i,j + 1,k- 1))

The resulting index domain and data field definitions appear in Program-2. The program
captures the red/black checkerboard algorithm of SOR described in Chapter 7 of [?], except
for the final partitioning of the two spatial coordinates onto processors and memory, which
again can be represented as a domain morphism and the transformation performed with the
same procedure but with difference in the detail in arithmetic simplification.

Program-2
! Index Domain

E = image(g', D) where{ g' = fn(ij, k):D{(ij, i + j + 2 * k)} }
! Hyper-Surfaces

Ro = fn(ij,k):E{(i = 0,>) A (i = n,<)A (j = 0,>) A (j =n,

R, = fn(i,j,k):E{(k-i-j=2,>)A(k-i-j=2*m,<))
! Data Field

a = fn(i,j,k):E

N (i, j, k) -0
111(i,j,k) - Ao(i,j)

]a (i, j,k) --, R+ (i'j,'k) -f j(a(i - 1, j, k- 1), &(1i - 1, k- 1),

a(i,j, k - 2), a(i + 1,j, k - 1),

b(ij + 1,k- 1))

We translate Program-2 into an imperative program to illustrate the effect of the domain
morphism on the implementation. We begin with the data structure. By analyzing data

5 Concluding Remarks 17

dependence of a, we know that a two dimensional array is needed to store the values of h at
each point of the spatial component of domain E. The recursive call made to a(i,j, k - 2)
indicates a value of 2 time step ago is needed. Since each element of a changed only once
every two time steps, there is no additional storage needed.

Next, the control structure. The bounds of the for-loop is derived from the temporal
component (indexed by k) of domain E, while those of the forall-loop from the spatial
component of E. The red/black checkerboard ordering of the over-relaxation is controlled by
the predicates of the if-statement in the forall-loop. These predicates are derived from the
hyper-surface R1 and the domain E. In particular, the test whole? ((k-i-j)/2) is to ensure
only those elements of E that are images of elements of D (which are integral) participate
in the computation. Note that because of the limitation of the syntax for specifying loop
bounds in current programming languages, the domain information must be specified both
in the loop bounds and in the if-statement.

Note that Program-2 contains all the necessary information for a translator to generate
the imperative program.

function SOR(AO)

float array A(O..n,O..n);

A(i,j) := AO(i,j);
for k:= 2 to 2*(n+m) do {
forall (i,j) in (O..n , O..n) do {
if (2*m > k-i-j) and (k-i-j > 2) and vhole?((k-i-j)/2)
then A(i,j) := f(A(i-1,j), A(ij-1), A(i,j), A(i+l,j), A(i,j+l))
fi }}

5 Concluding Remarks

The complexity of managing explicit parallelism to produce efficient code remains a major
obstacle in the widespread use of the new generation of parallel machines. At the same time,
the task of automatically generating parallel programs appears to be extremely difficult and
costly, except for a very restricted class of problems. Recognizing these issues, we know that a
balance must be sought between the automatable and the effort required of the programmer.

Our work provides a theoretical basis for and makes evident where to draw the line
between what is automatable and what needs user-directives. As far as we know, this is
a first attempt at formalizing parallelizing compiler techniques. One of its consequence is
to provide a framework for systematic application of these techniques, where a reference
metric is defined over the communication forms to provide guidance in minimizing certain
cost. Parallelization and optimization techniques have, by and large, been done in an ad hoc
fashion, and we have just began to understand their interactions now that this theoretical
framework is in place.

A Hyper-Surfaces 18

A Hyper-Surfaces

Hyper-surfaces define the boundaries of domains where functions take on special values. By
making hyper-surfaces first class objects, we eliminate the repetitive occurrence of related
boolean expressions for boundary testing which makes compiler optimization difficult.

A data field definition will usually contain a conditional expression which tests for certain
boundary conditions from the interior of the domain of definition. These tests are usually
expressed as inequalities over the formal parameters. When many data fields are defined
over the same domain, the tests may be combined and transformed into very different forms,
making the domain analysis very difficult.

In order to preserve the semantic content of tests for boundary conditions, we introduce
a general notion of a hyper-surface which specifies the boundary of a domain, and a number
of operators for testing whether a point is on the positive or the negative "side" of the
boundary, or on the boundary.

In the following, all manifolds are assumed to be simply connected, such as Euclidean
spaces. Note, however, that the notion of hyper-surface can be extended to trees and other
discrete structures which contain a notion of locality and can be partitioned into the positive
and the negative components.

Definition For any n-dimensional manifold M, a hyper-surface is an (n - 1)-dimensional
sub-manifold S which partitions M into two components known as the positive (S') and
the negative (S,;) components.

For each surface S in M, we define three associated boolean valued functions. For each
point x in M:

S0 (x) iff x E S (surface)

S+ (x) iff x E SM+ (positive-component)

S (x) iff x E Sj (negative-component)

By an abuse of notation, we write S(x) for S0 (x). Usually, we just write S + when the
ambient manifold M is understood.

A.1 Representation

For n-dimensional Euclidean space over the reals, a hyper-surface can be specified by an
equation r[xl,...,x,,] = 0, where the left hand side contains at least one index xi with
non-zero coefficient, and an orientation. One way to specify the positive component with
respect to the hyper-surface is by modifying the equation into an inequation. There are two
possibilities, the positive component can be defined as the set of points which satisfy either
r < 0 or r > 0. We formalize this into a hyper-surface constructor.

Definition Let D be an n-dimensional manifold. The expression

fn(x1,... ,x,): D{(r[x1,... ,X] = 0,-y)}

denotes a simple hyper-surface defined by the equation rX 1,... ,Xn] = 0 and the positive
component is given by f, which can be either < or >.

A Hyper-Surfaces 19

Example Let D be the 3-dimensional Euclidean space. Then

fn(i, j, k) : D{ (k - (i + j)/2 = 0, >)}

denotes a hyper-surface of D such that S* (i,J, k) iff k - (I + j) /2 = 0 and S+ (i, j, k) iff
k - (I +j)/2 > 0.

A.2 Hyper-Surface Operations

Let S, and S2 be hyper-surfaces of M. We can define the conjunction (S1 A S2), negation
(jdisjunction (S1 V S2) using the notion of positive component:

(SI A S2)+ = S+ nlS2+ and 3+ =S- and S V S 2 = TA 2 .

The effect of conjunction is to take the conjunction of the two defining equations, while that
rUf nCgat--i~ is Lo switch < and >.

In general, we can define complex hyper-surfaces by allowing logical conjunction, disjunc-
tion, and negation in the body of the hyper-surface constructor:

fn (x) : D{(ri (x] = 0, -t) A (T2[(x] = 0, -2)1

= (fn (x) D D(i [x] = 0,71y)1) A (fn (x) -D{(r 2 [x] = 0,7-2)})

fn (x) : D{(ri [x] = 0, -k) V (r2 [x] = 0, -2)}

=(fn (x) D D(r 1 [x] = 0, 7y)}) V (fn (x) : D{(7-2[x] = 0, -2)})

fn (x) : D{-(r [x] = 0,7) fn (x) : D{I(r [x] = 0,7 fn (x) D D(T [x] 0, -')}

where -Y is one of {,>} which is the opposite of -f.

